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SUMMARY 

This paper presents results of an ongoing research program directed towards developing fast and efficient 
finite element solution algorithms for the simulation of large-scale flow problems. Two main steps were 
taken towards achieving this goal. The first step was to employ segregated solution schemes as opposed to 
the fully coupled solution approach traditionally used in many finite element solution algorithms. The 
second step was to replace the direct Gaussian elimination linear equation solvers used in the first step with 
iterative solvers of the conjugate gradient and conjugate residual type. The three segregated solution 
algorithms developed in step one are first presented and their integrity and relative performance demon- 
strated by way of a few examples. Next, the four types of iterative solvers (i.e. two options for solving the 
symmetric pressure type equations and two options for solving the non-symmetric advection4iffusion type 
equations resulting from the segregated algorithms) together with the two preconditioning strategies 
employed in our study are presented. Finally, using examples of practical relevance the paper documents the 
large gains which result in computational efficiency, over fully coupled solution algorithms, as each of the 
above two main steps are introduced. It is shown that these gains become increasingly more dramatic as the 
complexity and size of the problem is increased. 

KEY WORDS Incompressible flow Finite element method Segregated solution algorithms Iterative solvers Implicit 
preconditioning 

1. INTRODUCTION AND BACKGROUND 

Historically, finite element CFD codes have employed fully coupled solution algorithms in 
conjunction with direct Gaussian elimination type solvers for the numerical solution of the 
incompressible Navier-Stokes equations. These algorithmic techniques were directly borrowed 
from the structural analysis community at the time when the finite element method (FEM) was 
finding its way to the CFD arena. This method of solution, while storage intensive, requires less 
CPU time compared to most other methods when applied to the solution of 2D (two-dimen- 
sional) laminar flow problems of moderate size. However, as the size and physical complexity of 
the flow problem is increased, the cost of the above solution techniques becomes prohibitively 
expensive, both in terms of storage and CPU time. This is especially true when large-scale 3D 
(three-dimensional) flow problems of industrial complexity are modelled. These serious limita- 
tions have led developers of finite element CFD codes to search for alternative algorithms based 
on segregated forms of solution and/or iterative (non-direct) linear equation solvers. 

Luckily the search for algorithms based on the segregated form of solution has been relatively 
easy as it has been possible to  borrow freely from the large database of knowledge and experience 
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accumulated by CFD practitioners using traditional finite difference and (in particular) finite 
volume methods. Given the limited storage capacities of computers in the early days of CFD, 
a combination of segregated and non-direct solution techniques provided the only viable route 
towards performing flow simulations of practical interest (these were predominantly 2D laminar 
flow problems on relatively coarse meshes). These algorithms were initially developed in the 
context of the finite difference method (see Reference 1-3) and were later adapted to the more 
general finite volume method4* (see also Reference 6 for a recent finite volume implementation of 
the MAC method of Harlow and Welsch3). Segregated solution algorithms have undergone many 
refinements since then and are now the preferred method of solution of most contemporary finite 
volume CFD codes. The SIMPLE algorithm’, and its many variants (SIMPLER, SIMPLEC, 
PISO, etc.) have emerged as being among the most successful algorithms in this area. 

As in many other fields of non-linear computational mechanics, the search for robust iterative 
linear equation solvers has not been easy. It was obvious from the onset that the non-direct 
solvers employed by the finite volume community could not be used in finite element codes as 
these are based on line relaxation techniques (AD1 schemes coupled with tri-diagonal solvers) and 
can therefore only be applied on structured meshes. (These solvers are now being slowly 
abandoned by those finite volume code developers who are adapting the finite volume method to 
unstructured meshes.) 

The next obvious choice of iterative solvers are those derived from the family of conjugate 
gradient (CG) and conjugate residual (CR) methods; these solvers are also referred to as 
matrix-free solvers since at the implementation level the global coefficient matrix need not 
necessarily be stored in its entirety as is the case with direct solvers. As they preserve the stencil 
structure of the original coefficient matrix-no zero fill-these solvers have minimal storage 
requirements and can potentially be very fast. However, the problem is that the current 
state-of-the-art of these solvers has not advanced to the point where these potential gains in speed 
can be consistently realized over the wide range of matrix characters which are typically 
encountered in CFD. (There is intense research activity in this field and it is hoped that 
increasingly more robust and effective versions of these solvers will appear in the near future.) 

While current iterative solvers are extremely efficient on simple well-behaved equation systems 
(i.e. equation systems with diagonally dominant, positive-definite and symmetric coefficient 
matrices), their performance deteriorates dramatically as the above-mentioned properties are lost 
from the coefficient matrix. The fully coupled linear equation systems resulting from the discretiz- 
ation by the Galerkin finite element method (GFEM) of the Navier-Stokes equations are 
particularly ill-suited to iterative linear equation type solvers as was demonstrated in an earlier 
study by Engelman and Hasbanig (see also Reference 10). This study suggested that the source of 
the difficulty was associated with the inclusion of the continuity constraint in the global 
coefficient matrix. On the one hand, a penalty approach leads to a non-symmetric definite 
ill-conditioned matrix with a large condition number, while on the other hand the mixed (u-p) 
approach leads to an indefinite non-symmetric system. Even the best iterative linear equation 
solvers with advanced preconditioners were found to be ineffective for these matrices. However, 
the study found that the same solvers could be used with significant success for the solution of two 
simpler types of equation systems which are typically encountered in segregated type solution 
algorithms; namely a Poisson type pressure equation and an advection-diffusion type equation 
for velocities and transported scalars such as temperature and chemical species. The clear 
conclusion emerging from that study was that the most promising route to pursue was to first 
formulate a segregated solution algorithm and then to solve the resulting equation systems with 
iterative linear equation solvers. This conclusion provided the impetus for the study reported 
herein. 
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The three segregated solution algorithms developed in the present study are presented in 
Section 2. Two of these algorithms, the pressure correction (PC) and pressure projection (PP) 
algorithms, are consistent finite element counterparts of the SIMPLE and SIMPLER algorithms, 
respectively. The third algorithm, the pressure update (PU) algorithm, is somewhat different in 
that the continuity equation is satisfied through penalizing the discretized continuity equation on 
the right-hand side of the discretized pressure equation. The integrity and relative performance of 
these algorithms are then demonstrated by way of a few numerical examples. 

In section 3 the topic of replacing the direct Gaussian type linear equation solvers used in the 
above algorithms with iterative conjugate gradient and conjugate residual type solvers is 
considered. Four iterative linear equation solvers and the associated preconditioning strategies 
used in conjunction with these solvers are first introduced. Next, the relative performance of the 
various iterative solvers is studied. Finally, the performance of the PP algorithm using iterative 
solvers is compared both with that of the PP algorithm and a fully coupled algorithm using the 
direct Gaussian elimination solvers. It is seen that the combined strategy of segregated formula- 
tion and iterative linear equation solution leads to an improvement in performance which 
becomes increasingly more dramatic as the size and complexity of the problem increases. 

The iterative solution algorithms presented in this paper have been incorporated in the 
incompressible finite element CFD code FIDAP (see Reference1 1). The various solution algo- 
rithms and linear equation solvers described in this paper may be optionally invoked by the user 
for the solution of a wide range of incompressible flow problems. All numerical tests presented in 
this report were performed with FIDAP on a Convex C220 computer. 

2. THE SEGREGATED ALGORITHMIC APPROACH 

2.1. Introduction 

In a fully coupled formulation, the algebraic equations resulting from the discretization of the 
continuum flow equations are assembled (after applying an appropriate linearization scheme) and 
the resultant global equation system is solved for all the nodal unknowns in a simultaneous 
manner (in principle, any linear equation solver may be used). Various formulations of the 
continuum equations may be used but the primitive variables, i.e. the (u-p), formulation, is the one 
most commonly employed - this is especially true for 3D flows. Thus, every solution of the 
equation system simultaneously updates all the unknown nodal velocities and pressures and any 
other transported scalar variables which may be present in the problem ~ such as temperature 
and/or chemical concentrations. If an advanced turbulence model is being employed, such as the 
k--E model, the simulation will involve the additional primary variables of turbulence kinetic 
energy k and its rate of viscous dissipation E .  

In a segregated formulation, the global discretized equation system is never assembled and 
solved in its entirety. Many variations are possible ranging from solving separately for each nodal 
unknown to solving simultaneously for all the nodal unknowns associated with one or more (but 
not all) of the primary flow variables. In this paper we consider segregated algorithms of the type 
where separate equation systems are assembled and solved for each of the primary flow variables. 

2.2. The fully coupled system of flow equations 

We will consider as our starting point the structure of the fully coupled global equation system 
resulting from the application of GFEM to the incompressible Navier-Stokes equations. We will 
consider only the primitive variables form of the equations together with the mixed formulation 
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and employ the fixed point Picard method as the non-linear solution strategy. Additionally, for 
transient problems, implicit time integration schemes (such as the backward Euler or trapezoidal 
schemes) will be used. Finally, for the sake of simplicity and brevity of exposition, only the 2D 
form of the laminar flow equations with an energy equation for heat transfer will be considered. 

In GFEM the flow equations and their associated boundary conditions are not solved directly; 
rather these are replaced by an equivalent weak formulation which essentially satisfies the flow 
equations in a weighted residual sense. In conventional GFEM, the pressure gradient terms 
appearing in the momentum equations and diffusion terms appearing in the various conservation 
equations are integrated by parts. This lowers the order of these differential terms and allows 
lower order interpolation functions to be used for pressure and the other primary variables. In 
this context the lowest order of spatial approximation allowed for pressure is piecewise discon- 
tinuous, i.e. C -  continuous. Correspondingly, the lowest order of spatial approximation for 
velocities, temperatures and other scalars present in the problem is piecewise linear or Co 
continuous. Integration by parts also leads to the so-called natural boundary integrals through 
which flux type boundary conditions are readily (and naturally) incorporated. Finally, an 
important stability criterion of the conventional GFEM approach is that certain compatibility 
conditions must be observed when selecting interpolation functions for pressure and velocities. 
Violation of this Babuska-Brezzi condition (or the inf-sup condition) typically leads to spurious 
pressure modes and in extreme cases a 'locking' of the velocity field. (There has been intense 
recent research activity in the FEM community in the development of stabilization schemes 
which allow the satisfaction of the Babuska-Brezzi condition for most velocity-pressure combi- 
nations. However, this very important topic is beyond the scope of the present paper - these 
techniques may readily be incorporated in the algorithms described herein.) 

The structure of the global equation system that results from the application of GFEM to the 
incompressible flow equations is as follows: 

which represents the discretized algebraic equations resulting from the four conservation equa- 
tions (i.e. the two momentum equations, the continuity equation and the energy equation). The 
vectors u, u, p and t? contain the nodal unknown velocities, pressures and temperatures, respec- 
tively. In the global coefficient matrix, the diagonal K sub-matrices represent the combined effects 
of advection and diffusion, and, in transient problems, the effects of the temporal terms. The 
off-diagonal K sub-matrices in the momentum equations represent coupling terms resulting from 
diffusion, and, in the case of rotating flows, those from Coriolis forces. In buoyant flows, the 
B matrices represent the components of the buoyancy force resulting from temperature variations 
(the Boussinesq approximation is employed for flows involving buoyancy). The C matricesare the 
pressure gradient operators and their transposes, the CT matrices appearing in the continuity 
equation, are the velocity divergence operators. The vector b, on the right-hand side of the 
continuity equation represents the contributions to this equation from the non-zero Dirichlet 
velocity boundary conditions. Finally, the right-hand-side vectors F and f contain surface-flux 
type contributions from the natural boundary conditions, and, in the case of transient flows, 
history effects from previous time levels. 

If, instead of the Picard scheme a gradient type scheme is used for the non-linear terms (such as 
a Newton type scheme), a different global matrix system results which is similar in structure to 
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equation (1). The left-hand side global coefficient matrix is replaced by the global Jacobian 
matrix, the right-hand side force vectors are replaced by the residual vectors and the unknown 
nodal vectors of the primary variables are replaced by vectors containing the incremental change 
in the primary nodal variables from one non-linear iteration to the next. 

In fully coupled flow algorithms the resultant linear equation systems at each iteration are 
solved simultaneously using the direct Gaussian elimination type solvers. As stated earlier 
iterative solvers perform very poorly on such equation systems mainly due to the zero entries 
appearing on the block diagonal position of the continuity equation. 

2.3. The segregated system of flow equations 

The global equation system of equation (1) may be decomposed into the following set of 
decoupled sub-equation systems for the two components of the momentum equation, for the 
continuity equation and for the energy equation, respectively, viz. 

( 2 4  K,u - C,p = F,, - K,,,v - B,B = f, , 

In order to simplify notation, the double subscripts of the diagonal K sub-matrices in the 
momentum equations (2a) and (2b) have been replaced by the single subscripts (u) and (v), 
respectively. 

The above system of equations forms the basis for the construction of segregated algorithms. 
However, while clearly decoupled, the form of these equations is not immediately amenable to 
a segregated solution approach as an explicit discretized equation for pressure is lacking. In 
principle, such an equation can be obtained by replacing the continuity equation (2c), which 
implicitly governs the pressure in incompressible flows, with the GFEM form of the consistent 
pressure equation. This is achieved by first left-multiplying the momentum equations by the 
inverses of their respective K matrices and then by left-multiplying again by the velocity 
divergence CT matrices. The equation for pressure that results from adding the two manipulated 
momentum equations is as follows. 

(34  (C:K; 'ex+ CTK; 'C,)p= -C:K; 'f. - CTK; 'fu+ C:U + CTV - b,. 

Note that the continuity equation (2c) appears on the right-hand side of equation (3a) and can 
therefore be set to zero. This enforcement of the discretized continuity constraint finally produces 
the consistent pressure equation viz. 

(CZK;'C,+CTK;'C,)p= -C:K; ' f . - C ; K ;  yu (3b) 
It  is very important to  note that equation (3b) has not been obtained directly from discretizing 

the continuum Poisson equation for pressure. Rather, it has been derived at the discretized level 
from manipulations of the discretized momentum and continuity equations. As a consequence the 
boundary conditions on pressure, implicitly implied in equation (2) (or equivalently equation (1)) 
through the boundary conditions on velocity, are automatically and consistently incorporated in 
equation (3b). Thus solving equations (2a) and (2b) with equation (2c) is equivalent to solving 
equations (2a) and (2b) with equation (3b). Equation (3b) has therefore been used to replace the 
continuity equation and in so doing serves as the desired explicit equation governing pressure. As 
will be seen shortly, the pressure matrix appearing on the left-hand side of equation (3b) is a full 
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matrix. In this paper we will refer to it as the full consistent pressure matrix (FCPM). More- 
over, the pressure equation itself will be referred to as the full consistent pressure equation 
(FCPE). 

The equations forming the basis for a segregated type solution are now equations (2a), (2b), (2d) 
and (3b). However, these are still rarely employed directly, as the FCPM in equation (3b) is 
prohibitively expensive to both construct and solve, not only because it is a full matrix, but also 
because its construction requires inverting the K ,  and K ,  matrices (the inverse matrices are full 
matrices even if the K matrices are banded). Moreover, for non-linear problems this matrix has to 
be constructed and solved once every iteration. Thus, in practice, segregated finite element 
algorithms employ alternative or simplified forms of the pressure equation which are cheaper to 
construct and solve. As the continuity equation (2c) can no longer be enforced directly on the 
right-hand side of the pressure equation (cf. equation (3a)), an alternative strategy of imposing the 
continuity constraint must also be devised. A large number of alternative approaches are possible, 
ranging from finite element counterparts of the well-established SIMPLE type and UZAWA type 
algorithms to others that are still under development. In a typical algorithm, the derived pressure 
equation is used to solve either directly for pressure p or indirectly for a pressure increment Ap. 

In designing these algorithms there are strictly two categories of alternative or simplified 
pressure equations that one can employ; simplified consistent pressure equations (SCPEs) and 
non-consistent pressure equations (NCPEs). 

Like the FCPE, SCPEs are obtained from direct manipulations of the discretized momentum 
and continuity equations. However, in their construction the K ,  and K ,  matrices are replaced by 
simpler matrices, say & and K",, that are easier to invert. The most common approach is to use 
diagonal matrices. The advantages of this are two fold: firstly, the inversion of the R matrices is 
trivial, and secondly, the simplified consistent pressure matrix (SCPM) that results (i.e. the 
[CTI?; 'C, + CTx; ICY] matrix) is a banded matrix which occupies less storage space and is less 
expensive to invert. Clearly the k matrices must have the same matrix size as the corresponding 
K matrices. This means that if the original K matrices are of the size ( N  x N )  then the matrices 
must be of size N .  Apart from the above requirement there are, from a mathematical standpoint, 
no other restrictions on the exact nature of the matrices. Thus, strictly speaking, any such 
matrix, even the identity matrix may be used. However, in order to avoid slow rates of 
convergence, I? matrices should be used that are in some manner similar or close to the 
K matrices. A typical choice is to employ k matrices which contain the diagonal entries of the 
original K matrices. 

NCPEs on the other hand are not obtained from direct manipulations of ths discretized 
momentum and continuity equations. The most common example of a NCPE is one which is 
obtained by directly discretizing the continuum V2 operator via FEM. While SCPEs, and their 
associated pressure matrices SCPMs, are in general more difficult to construct compared to 
NCPEs, it is through the use of such equations that a segregated algorithm can exactly satisfy 
both the discretized continuity equation (2c) and the consistent boundary conditions on pressure 
as implied by equation (1). If use is made of NCPEs in a segregated algorithm it will not be 
possible to apply consistent boundary conditions on pressure and the continuity constraint as 
defined by equation (2c) will only be satisfied approximately (see References 12 and 13). 

In section 2.4, we will outline the segregated algorithms which were developed in the present 
study. Before that a brief review is presented of various segregated finite element algorithms 
which have recently appeared in the literature. 

As stated in Section 1, a clear trend has emerged in the finite element CFD community towards 
adopting segregated type solution algorithms and that most of these have been based on either 
the SIMPLE or UZAWA type algorithms. SIMPLE type finite element algorithms have been 
developed among others by Benim and Zinser,I4 Kim and Chung," Rice and Schnipke,16 
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Nonino and Giudice,17 and Shaw.18 UZAWA type algorithms have been employed among 
others by Cahouet and Chabard,” Fortin and Fortin” and Fortin and Boivin.” 

Of the SIMPLE type algorithms, those of Nonino and Giudice17 and Kim and Chung15 are of 
the transient kind, i.e. the temporal terms in the flow equations act as pivotal terms in the 
algorithm. Thus, even if only the steady-state solution is of interest, the flow equations need to be 
integrated in time to reach that state. This approach, while being acceptable (indeed necessary in 
cases where the final solution is either quasi-steady or dependent on the flow evolution history), 
may not be cost-effective for most problems where only the steady-state solution is of interest. 

In general, it is typically more difficult to develop steady-state versions of segregated type 
algorithms since one can no longer make direct use of the time step At, which is a characteristic 
and natural time scale of the discretization. However, once such a steady-state algorithm is 
devised, its extension to a transient version is ‘straightforward’, as this can be implemented 
without changing the overall structure of the algorithm. 

The algorithms of Benim and Zinser,I4 Rice and Schnipke16 and Shawl’ are of the steady-state 
type. Of these the algorithm of Benim and Zinser14 is the most consistent finite element 
implementation (from the standpoint of conventional GFEM methodology) of the SIMPLE 
algorithm. They employ a SCPE for the pressure correction Ap and, in accordance with standard 
GFEM practice, use a pressure interpolation which is one order lower than the interpolation 
functions used for velocities. 

The algorithms of Shawl8 and Rice and Schnipke16 are somewhat less orthodox in the sense 
that they are not based on the conventional weak form of the flow equations resulting from 
GFEM. Moreover, in their algorithms they use a NCPE for pressure (in the case of Rice and 
Schnipke) or pressure correction (in the case of Shaw). This approach has the very desirable 
advantage of precluding spurious pressure modes from the pressure solution which consequently 
allows them to employ the desirable feature of equal-order interpolation for velocities and 
pressures. However, these advantages are gained at  the expense of compromising the exact 
satisfaction of equation (2c) and the proper imposition of pressure boundary conditions as 
described earlier. 

The basic UZAWA algorithm (see Reference 2) is derived by considering the classical problem 
of minimizing the dual Lagrangian functional whose saddle points are characterized by the 
Stokes equations (i.e. the linear momentum and continuity equations). Many variations and 
extensions are possible both at  the continuum and discretized levels. Cahouet and Chabard” 
used an iterative variant of the classical UZAWA algorithm to enforce continuity as part of an 
overall segregated time-dependent solution algorithm (see also Reference 22). Fortin and Fortin” 
and Fortin and Boivin” have used variations of the UZAWA algorithm which are based on 
minimizing the augmented Lagrangian f~nctional.’~ The equations characterizing the saddle 
points of the augmented Lagrangian functional are the continuity equation plus a modified 
momentum equation which is augmented by a penalty term involving the continuity equation. 
This further enforcement of the continuity constraint has the advantage of accelerating the 
convergence of the algorithm. However, the accelerated rates of convergence are typically 
achieved with large values O( lo6) of the associated penalty parameter. This not only introduces 
a strong coupling between the components of the momentum equations, but also leads to 
a coefficient matrix with a large condition number. As a result, augmented UZAWA algorithms 
are less amenable to iterative solvers and the momentum equations are typically solved in a fully 
coupled manner using direct solvers. 

UZAWA algorithms also involve, directly or indirectly (depending on the details of implemen- 
tation), the solution of discretized pressure equations. In the above described UZAWA algo- 
rithms use is made of consistent discretized pressure equations throughout so that the continuity 
constraint and the pressure boundary conditions are correctly applied. 
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2.4. The present segregated solution algorithms 

The design of the segregated solution algorithms reported herein was guided by a series of 
primary objectives. The two most important of these were the requirements that the algorithms 
be applicable to both the transient and steady-state version of the flow equations, and that they be 
equivalent at the discretized level to the original system of discretized equations represented by 
equation (l), or its equivalent form, equation (2). This last requirement means that solving a given 
flow problem using the segregated solution algorithm should result in, within the accuracy of the 
user prescribed convergence tolerance, exactly the same solution as that obtained using a fully 
coupled algorithm on equation (1). Moreover, the philosophy underpinning the work was to 
avoid the introduction of any scheme or technique which would restrict the geometric flexibility 
of the finite element method. Additionally, element dependent techniques were also to be avoided 
so that use could be made of all types of elements available in the element library. 

The three segregated solution algorithms developed in this study are presented in detail below. 

2.4.1. The pressure correction (PC)  algorithm. The PC algorithm is a direct finite element 
counterpart of the well-established SIMPLE algorithm. The SIMPLE algorithm and the steps 
leading to its derivation are discussed in detail by Pa tankar . '~~  Here only a brief description of 
the algorithm is given. 

In the SIMPLE algorithm the velocities and pressures are assumed to be decomposed into 
primary and corrective components. As convergence is approached, the corrective components 
vanish and the primary components asymptote towards the final solution. The primary compon- 
ents of velocity are obtained from the solution of the momentum equations using the latest 
pressures and velocities. In general, the updated velocities will not satisfy continuity and when 
substituted in the discretized continuity equation will produce a non-zero residual. This residual 
is used to drive an equation for the pressure correction Ap, which is obtained from manipulations 
of the discretized momentum and continuity equations. The pressure correction is consequently 
used to update the pressure and to obtain the correction velocities which mass-adjust the velocity 
field to satisfy continuity. As the above sequence is repeated and convergence is approached, the 
continuity equation is more closely satisfied which in turn leads to smaller pressure corrections 
and consequently smaller velocity corrections. At convergence the velocities and pressures 
simultaneously satisfy the discretized momentum and continuity equations. If other transported 
scalars (such as temperature) are also present in the flow problem, the discretized conservation 
equations governing these scalars are solved sequentially with the rest of the flow equations. 

The implementation of our version of the SIMPLE algorithm may be summarized in the 
following algorithmic steps: 

Given an initial or guess solution field (uo, uo, po,  do), for i =O,  1,2,3, . . . until convergence, the 
following steps should be taken: 

(1) solve SCPE for pressure correction Ap 

[CT(X;')* C,+C~(X;')*C,]Api+''z = - C?&'- C;fd + b,; 

(2) mass-adjust velocity field and increment pressure via 

u i + 1 / 2 -  --u i +(El')* C, A p i f ' / 2 ;  

,,i+ 112 - i - u + (z; ')* C ,  Ap' + ' I 2 ,  
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(3) solve x-momentum equation for u 

(4) solve y-momentum equation for v 

( 5 )  solve energy equation for 8 

In the above equations the superscripts i, i +  1/2 and i +  1 denote previous, intermediate and 
latest iterate levels, respectively, while the superscript * denotes an expression involving latest 
available field variables. The K" matrices are some convenient approximation to their correspond- 
ing K matrices. These are used both for the construction of the SCPM for Ap, and on either side of 
the momentum and energy equations to relax these equations. The exact definition of the 
R matrices will be given in Remark 2.4. Finally, the CI'S appearing in the above equations are 
relaxation factors which assume values between 0 and 1; the former producing no relaxation and 
latter producing infinite relaxation (i.e. no change in solution). 

2.4.2. The pressure projection (PP) algorithm. The PP algorithm is a consistent finite element 
counterpart of the SIMPLER algorithm (see Reference 7). The important difference between this 
version of the segregated algorithm and the correction version above is that the pressure is 
obtained directly from the solution of a SCPE. The algorithm comprises three main steps. At the 
beginning of a given iteration, an approximation to the pressure is obtained from the solution of 
a SCPE using the latest available field variables. The various components of the momentum 
equations and any other conservation equations present in the flow problem are then solved in 
a sequential manner using the most recent field data. Finally, at  the end of the algorithmic 
sequence the velocity field is mass-adjusted (i.e. forced to satisfy the discretized continuity 
equation) via an irrotational projection onto a divergence-free sub-space. This last step, which is 
similar to a least-squares mass adjustment, requires the solution of a further SCPE system for 
a pseudo-pressure p'. The SIMPLER algorithm is known to have superior convergence charac- 
teristics compared to the SIMPLE algorithm. 

The implementation of our version of the SIMPLER algorithm may be summarized in the 
following algorithmic steps. 

Given an initial or guess solution field (uo, YO, po ,  Oo), for i=O,  1,2, . . . until convergence, the 
following steps should be taken: 

(1) solve SCPE for pressure p, 

[c:(K"; I)* c, + c;F(R; I)* C,] p i+  = - Cz(R; ')*[f,* -K:ui] - CT(K";')* [If: - K:ui]; (5a) 
.- 

(2) relax pressure via 

1 = + (1 - ap) 112; (5b) 
(3) solve x-momentum equation for u, 
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(4) solve y-momentum equation for u, 

( 5 )  solve energy equation for 8, 

(6) solve SCPE for ps,  

(7) mass adjust velocity field via 

In the above equations the definition of the superscripts and i? matrices is the same as jn the 
PC algorithm. 

2.4.3. The pressure update ( P U )  algorithm. While in the PP and PC algorithms the incom- 
pressibility constraint was being satisfied via mass-adjusting the velocity field using a pressure 
correction or pseudo-pressure field, in the PU algorithm continuity is satisfied through penalizing 
the continuity equation on the right-hand side of the SCPE. To the best of our knowledge there is 
no counterpart of this algorithm in the finite volume context. We will not attempt its detailed 
derivation here except to say that it was conceived from the notion of a pseudo-temporal 
approach applied to the momentum equations. The change in the momentum equations from one 
iteration to the other is considered to be along some type of pseudo-time dimension which 
advances at different rates in different physical locations of the discretized domain. In a real 
transient approach the mass matrix, multiplied by the inverse of the time step, appears on both 
sides of the discretized momentum equations. In this pseudo-temporal approach the above 
product (i.e. mass matrix divided by At) is replaced by the K" matrices. The pseudo-momentum 
equations are not used directly to solve for velocities; rather they are employed to arrive at 
a SCPE for pressure which contains on its right-hand side the discretized continuity equation at 
both the current and the advanced iterate levels. Finally, the desired SCPE is obtained by 
requiring that continuity be satisfied at the advanced iterate level. 

The algorithmic steps involved in this version of the segregated algorithm are as follows. 

Given an initial or guess solution (uo, uo, po ,  8') for i = O ,  1,2,3. . . . . until convergence, the 
following steps should be taken: 

(1) solve SCPE for pressure p ,  

[C~(K";1)*Cx+C~(~;')*Cy]pi+112= -CT(K";')*[ f: - K:u'] -C:(K";')*[ f t  -K:u'] 

- AAC$' + CTU' - bJ, 

pi+ 1 = U p  pi + (1 - a&'+ '12, 

(64  

(6b) 

(2) relax pressure via 
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(3) solve x-momentum equation for u, 

* [ (5) d, + K,,] ui + =f: + C ,  pi + + (L) 1-a, I?: ui ; 

(4) solve y-momentum equation for u, 

(5) solve energy equation for 0, 

The notation convention used in the above equations is the same as that used in the PC and PP 
algorithms above. However, note the appearance of the dimensionless coefficient A,, on the 
right-hand side of the pressure equation. This may be thought of as a penalty parameter which 
controls the penalization of the continuity constraint in the pressure equation. The value of A, 
should be chosen large enough to adequately enforce the continuity constraint. However, too 
large a value may lead to large pressure perturbations and destabilize the convergence behaviour. 
Our testing has shown the range 0.1 < A p < l  to work well for most problems and we have 
consequently adopted a default value of Ap=0.2. 

Remarks 2.4 

1. Recall that the above three algorithms are variations based on equations (2a), (2b), (2d) and 
(3b). These alternative approaches need to be adopted since it is prohibitively expensive to 
construct and solve equation (3b). 

2. In the above algorithms use is made of SCPEs throughout for the pressure-like variables. An 
inspection of the above algorithms shows that at convergence they satisfy all the discretized 
equations in equation (1) and their associated boundary conditions, including the implied 
boundary conditions on pressure, to within the convergence tolerance. Therefore, the 
solution which is obtained from these algorithms is formally identical to the one that would 
be obtained from solving the system of equations (1) or equations (2), in a fully coupled 
manner. We have verified this through numerous numerical tests. 

3. The k matrices in the above algorithms are diagonal matrices and are obtained from the 
following expressions: 

where 1 denotes a sum or assembly of element-level contributions. 

Since the abeove l? matrices are diagonal, their inversion is trivial and inexpensive. As 
a result the SCPMs appearing in the above algorithms are substantially less expensive to 
construct and solve compared to the FCPM in equation (3b). However, note that the 
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construction of these SCPMs is still non-trivial as they can only be formed at the global level 
from the global C and R matrices. As these SCPMs need to be formed repeatedly during the 
course of the computations (typically once per iteration), it is important to devise fast and 
efficient procedures for their construction. 

4. It can be readily shown that the converged solution in the above algorithms is entirely 
independent of the exact nature of the K matrices as long as the dimension of the R matrices 
is the same as their corresponding K matrices. Thus, strictly speaking, any matrix could be 
used; even the identity matrix. However, in order to obtain reasonable rates of convergence, 
the R matrices should be close to the K matrices in some sense. Our choice of the k matrices 
as defined by equation (7) provides a reasonable compromise between closeness to the 
K matrices and simplicity. A more sophisticated choice which could lead to faster rates of 
convergence would be to employ banded matrices which are incomplete versions of the 
full K matrices. For instance, the I? matrices may only contain entries in locations 
corresponding to the original K matrices. Many variations are possible, however, these 
more sophisticated choices will significantly increase the cost of forming the SCPMs and will 
only be effective if they dramatically increase the rate of convergence. 

5. There is an important distinction between the pressure correction variable Ap in the PC 
algorithm and the pseudo-pressure p s  in the PP algorithm. While both variables are used in 
the same manner to perform the mass adjustments, they have different physical significances. 
In the PC algorithm, Ap is a true physical pressure which is also used to update the pressure 
field. In the PP algorithm, p s  although having dimensions of pressure, is in reality a Lagran- 
gian multiplier through which the velocity field is mass adjusted. ps  is discarded after the 
mass adjustment process and is not used to update the pressure field. 

6. The order (or sequence) of the various steps appearing in the above algorithms was 
determined partly by heuristic notions of optimality of rate of convergence and partly by the 
need to produce a computer code that was efficient and well organized. 

7. Relaxation of the equations in the above algorithms is achieved in two entirely different 
ways. The pressures are relaxed explicitly (cf. equation (5b)). On the other hand, inertial or 
implicit relaxation is used for the other primary variables governed by transport equations. 
This has the effect of increasing the weight of the diagonal terms of the coefficient matrix of 
the equations governing these primary variables. That is, in the above equations the 
[ ( E / (  1 - ol))l? + K ]  matrices are more diagonally dominant than the K matrices. It is well 
known that iterative matrix solvers perform more favourably on diagonally dominant 
systems. As our ultimate intention was to use iterative solvers in our algorithms, we 
introduced implicit relaxation (i.e. implicit preconditioning) in the equations to render them 
more amenable to these solvers (see Section 3.4). 

2.5. Numerical tests and discussion of results 

In this section some selected results are presented from numerous numerical tests which were 
conducted with the above segregated algorithms. These demonstrate the integrity of the algo- 
rithms and their performance relative to each other and a fully coupled solution algorithm. All the 
numerical tests reported in this section were performed using the direct Gaussian elimination type 
linear equation solvers for the various equation sub-systems. 

First the relative performance of the three algorithms is shown by considering the two flow test 
cases identified in Table I. 

In Case 1, a mesh of 943 nodes is employed consisting of 212 9-node quadratic quadrilateral 
elements. In case 2, a mesh of 1305 nodes is employed consisting of 1232 4-node linear 
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Case 2 

335 

2D turbulent flow in axisymmetric U-bend at Re= 100000 

Table I. Definition of test Cases 1 and 2 
, 

Case 1 ~ 2D laminar flow over two ribs in a channel at Re= 100 

Table 11. Relative performance of the PC, PU and PP algorithms 

Case 1 Case 2 

Solution algorithm PC PU PP PC PU PP 
No. of iterations 98 39 24 = 1000 171 135 
CPU time (seconds) 250 100 62 ~10000  1976 1570 

quadrilateral elements. The standard k--E turbulence model (Reference 24) is used in Case 2 and in 
all other turbulent flow problems reported in this paper. Moreover, in turbulent flows involving 
solid boundaries, specialized near-wall finite elements are used to model the viscous and buffer 
sublayers (see Reference 25). 
Selected performance data from the above two test cases are presented in Table 11. 

experience with the above three algorithms is summarized below. 
The information contained in Table I1 and some additional information relating to our 

Remarks 2.5.1 

1. 

2. 

3. 

4. 

5. 

6. 

The above runs were made with finely tuned relaxation factors so that the data contained in 
the above table representatively reflects the relative performance characteristics of the above 
three algorithms. 
It is seen from Table I1 that of the three algorithms the PP algorithm is the most efficient; it 
is closely followed by the PU algorithm, and the PC algorithm is the slowest by a substantial 
margin. 
The above performance characteristics are quite representative over a much wider range of 
flow problems. 
The PP algorithm requires the least amount of relaxation for stability and the PC algorithm 
requires the most. 
Owing to its superior efficiency, we have employed the PP algorithm far more extensively 
than the PU and PC algorithms. For this reason we will only present numerical results from 
the PP algorithm in the remainder of this section and in Section 3, where the topic of 
iterative solution techniques is considered. 
As alluded to in Section 1, for the small-scale problems considered above, a segregated 
scheme is not necessarily the most efficient approach of solution. For example, with a fully 
coupled solution algorithm using the Picard method and a (u-p) formulation 
(cf. equation (1)) Case 1 can be solved in 31 s using about five times more CPU memory. 
Moreover, even more efficient fully coupled algorithms may be used. The same problem 
when solved with a fully coupled algorithm using the Newton-Raphson scheme and the 
penalty formulation only required 14 s of CPU time and less than three times more storage 
compared to the segregated algorithms. However, the Newton-Raphson schemes have 
a much smaller radius of convergence compared to the Picard scheme and are therefore not 
generally robust enough to be applied to a wide range of flow problems. This is especially 
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true of turbulent flow problems where the k--E turbulence model is employed in the 
simulation. 

Next the performance of the PP algorithm is shown relative to the fully coupled algorithm 
using the Picard scheme and the (u-p) formulation - the base fully coupled algorithm denoted 
hereafter as the FC algorithm. For this purpose two additional test problems are introduced 
which are identified in Table 111. 

In the above examples, test runs are made with both a coarse and a fine mesh. This also allows 
relative performances to be studied as a function of mesh refinement. 

Selected performance data from the above two test cases are presented in Table IV. 
The information contained in Table IV and some additional information relating to experience 

we have gained in comparing the performances of the PP algorithm and the FC algorithm is 
summarized below. 

Remarks 2.5.2 

1. The P P  algorithm always requires significantly less matrix storage compared to the FC 
algorithm. (The storage requirements of the PP, PU and PC algorithms are identical.) 

2. The theoretical matrix storage ratio between the FC and PP algorithms is NDOF’, where 
NDOF is equal to the primary active degrees of freedom, i.e. u,u, w,  p ,  etc. (This ratio is 
typically realized on large meshes where the effects of the Dirichlet boundary conditions on 
matrix size become negligible.) Thus, the P P  algorithm will require proportionately less 
matrix storage as the dimensionality and the number of primary variables involved in the 
flow problem (e.g. temperature, chemical species concentration, k and E )  are increased. 

3. The CPU time ratio between the FC and PP algorithms is less predictable. It can be shown 
that the theoretical matrix solution time ratio between the FC and PP algorithms is NDOF’ 
per iteration. Again this ratio is typically realized on very fine meshes where the overhead 
costs associated with the other parts of the algorithms (i.e. cost of martix formation and 

Table 111. Definition of test Cases 3 and 4 
I 

~ ~~- 

Case 3 

Case 4 

I 2D laminar flow in square driven cavity at Re= 1000 

3D laminar flow in square driven cavity a t  Re = 100 
~~ ~ ~~ ~ 

Table IV. Relative performance of the PP and F C  algorithms 

No. of nodes 
Case 3 Case 4 

(51 x 51) (101 x 101) (15 x 7 x 15) (21 x 11 x 21) 

Solution algorithm 
No. of iterations 
Solution time 

(CPU seconds) 
Time/iteration 

(CPU seconds) 
Matrix storage 

(megawords) 

F C  PP FC PP FC PP FC PP 
12 67 12 141 8 10 8 14 

275 889 2912 12506 450 255 6736 2437 

22.9 13.2 242.6 88.6 56.2 25.5 842 174.1 

1.47 0.27 11.9 2,07 2.47 0.335 21.7 2.25 
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assembly, which is linearly proportional to the number of elements) become negligible. Thus, 
the PP algorithm requires less CPU time per iteration than the FC algorithm and this 
difference becomes larger with increasing NDOF. 

4. Total CPU time is, of course, also a function of the number of iterations needed to reach 
convergence. The PP algorithm (and the other segregated algorithms), being decoupled in 
nature, typically requires more iterations to converge compared to the FC algorithm. 
A further side-effect of decoupling is that the number of iterations typically grow with mesh 
refinement. The FC algorithm exhibits no such tendency. 

5. We have found that for most 2D problems the FC algorithm is more efficient in CPU time 
and that for almost all 3D problems the PP algorithm is more efficient. 

While the above segregated solution algorithms are substantially more efficient than fully 
coupled solution algorithms for 3D flow problems, their storage and CPU time requirements still 
grow rapidly with increasing mesh size. This is due to the use of the direct Gaussian elimination 
type solvers in these algorithms. For example for moderately sized 3D turbulent (k--E model) flow 
problems involving of the order of 40000 nodes, the PP algorithm using a direct solver can 
require a gigabyte of disk space and many hours of CPU time on a Cray XMP computer. 

Recall that the purpose of the first phase of our project was to design segregated solution 
algorithms and to test their integrity and validity. With this step successfully completed the next 
obvious step was to replace the direct solvers with iterative solvers. The results of this second 
phase of the project are reported in the following sections. 

3. ITERATIVE SOLUTION O F  THE LINEAR EQUATION SYSTEMS 

3.1. Introduction 

In the segregated solution algorithms described in the previous section, two types of linear 
equation systems are encountered; the pressure type equations (the SCPEs) and the advec- 
tiondiffusion type equations arising from the conservation equations of momentum and energy. 
The coefficient matrices of the SCPEs (i.e. the SCPMs) are symmetric positive-semidefinite and 
the coefficient matrices of the advection- diffusion type equations are non-symmetric positive 
real. 

As noted in Section 2, the above equation systems were initially solved using direct solvers. The 
great advantage of direct solution is that for non-singular coefficient matrices a solution to the 
equation system is always obtained after a finite number of arithmetic operations. The disadvan- 
tage of direct solution is that for large-scale simulations the computer resources needed (CPU, 
T/O, memory and disk storage) become prohibitively large. 

Given a system of N linear equations A x  = h (where A is an ( N  x N )  non-singular coefficient 
matrix), iterative solvers begin with an initial guess xo and compute a sequence of approximate 
solutions (x,} that hopefully converge towards the exact solution. The accuracy of the solution 
depends on the number of iterations performed. Iterative solvers have the advantage over direct 
solvers of preserving the sparsity of the coefficient matrix. This feature is particularly attractive in 
a finite element context where the coefficient matrices are characterized by a large number of zero 
entries. Another advantage of iterative solvers is that for most implementations only the product 
of the coefficient matrix and a vector is required rather than the coefficient matrix itself. This 
obviates the need to form the coefficient matrix directly which results in reduced storage 
requirements. These savings increase dramatically as the size and bandwidth of the coefficient 
matrix increases. 
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The amount of effort involved in solving a linear equation system using an iterative solver 
depends on the convergence rate and the desired accuracy. A significant drawback of iterative 
solvers is the possibility of slow or irregular convergence, or divergence of the iterates. The 
convergence rate of an iterative solver depends on the properties of the coefficient matrix A.  These 
properties are themselves characterized by the spectrum of the coefficient matrix (the spectrum of 
A is the set of all N eigen values of A denoted by; 1(A)= {Al,  . . . , AN}) and the precise manner in 
which all the eigenvalues comprising the spectrum are distributed in the complex plane. It is well 
known that positive-definiteness, diagonal dominance and symmetry are properties of the 
coefficient matrix which lead to better convergence behaviour in iterative solvers. As these 
properties are lost, convergence behaviour deteriorates and it becomes necessary to adopt more 
sophisticated (and invariably more expensive) iterative solvers. The rate of convergence can often 
be dramatically increased by the technique of preconditioning. More information on iterative 
solvers can be found in Reference 26. 

In the present study a number of iterative solvers were implemented to optionally replace the 
direct Gaussian elimination solvers in the above segregated algorithms. In the following sections 
these solvers are introduced. 

3.2. The symmetric linear equation system solvers 

In this section the two iterative solvers which were used to solve the pressure type equation 
systems are detailed. Recall that the coefficient matrices in these equations are of the SCPM type 
which are symmetric and positive-semidefinite. The last characteristic (i.e. semidefiniteness) 
results from the fact that many SCPMs contain singular modes or zero energy modes which 
manifest themselves in terms of mostly spurious pressure patterns which while polluting the 
pressure solution are transparent to the velocity field; for a thorough discussion of pressure 
modes and their origins see Reference 27. Unfortunately this characteristic may introduce 
a destabilizing influence on an otherwise well-behaved matrix. 

For the simplest case of a symmetric and positive-definite coefficient matrix there is a large 
body of theory and there are several very successful iterative solvers (see Reference 9). The most 
widely used and the most successful of these is the conjugate gradient (CG) solver, which is related 
to the Lanczos method for tridiagonalizing a matrix. The CG solver can in fact be viewed as 
a direct solver since in the absence of round-off error it gives the exact solution in N steps, where 
N is the number of equations (or unknowns). Alternatively, it may be viewed as being an 
approximate solver which produces an approximate solution in far fewer steps. An attractive 
feature of the solver is that it does not incorporate any tuning parameters and yet has the very 
desirable attributes of optimality and monotonicity. 

Another solver that is very effective for symmetric positive definite matrices is the conjugate 
residual (CR) solver (see References 26 and 28). This solver is closely related to the CG solver and 
differs mainly in the definition of the functional used to minimize the error in the inner iterations. 
Like the CG solver, the CR solver possesses the properties of optimality and monotonicity 
without the introduction of any tuning parameters. 

Both of these solvers have been employed in this study to solve the SCPEs appearing in the 
segregated algorithms. 

3.2.1. The CG solver. Consider the system of N linear equations A x  = b, where A is a symmet- 
ric matrix. The basic algorithmic steps of the CG solver are as follows. 

Given an initial guess xo, obtain a sequence (x,) of approximations to the solution x from: 
choose xo, 
set ro = b - A x o ,  
set p o  = ro, 
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for i = 0,1,2, . . . until convergence do: 

ai =(ri, ri)/@i, APi), 
xi+1 =xi+uipi, 

=r i -u iApi ,  

bi=(ri+ 1, T i +  l ) /(ri ,  ri), 
P i + l  = T i +  1 +biPi. 

The computational effort per inner iteration involves 5N multiplications plus one 
matrix-vector product. The minimum storage requirement is a very modest four vectors of 
length N .  

3.2.2. The CR solver. The basic algorithmic steps of the CR solver are closely related to that of 
the CG solver. An efficient implementation of the CR solver with respect to the number of 
operations per inner iteration is: 

choose xo, 
set ro =b - A x o ,  
set po = ro ,  
for i = 0, 1,2,. . . until convergence do: 

ai=(ri, Ari)/(Api, APJ? 

xi+ 1 =xi+  uipi, 

= r i - a i A p i ,  

bi=(ri+ 1, Ari+ Mi, Ari), 

Pi+ 1 = T i  + 1 + bipi 9 

Api + I = Ari + + biApi. 

The computational effort is slightly more than the CG solver. This involves 6 N  multiplications 
and one matrix-vector product. Five vectors of length N need to be stored as a minimum. 

3.3. The non-symmetric linear equation system solvers 

The diagonal dominance and asymmetry characteristics of the coefficient matrices of advec- 
tion-diffusion type equation systems depends on the grid Reynolds and/or Peclet numbers. At 
very low grid Reynolds/Peclet numbers, these coefficient matrices are dominated by the positive- 
definite symmetric diffusion operators. However, as advection in the computational mesh 
becomes important, the anti-symmetric advection operators become dominant and not only lead 
to  a non-symmetric coefficient matrix but also diminish the diagonal dominance. 

As the iterative solution of equation systems with non-symmetric coefficient matrices is more 
difficult, there is in general less theory available and it is more challenging to provide rigorous 
proof or guarantee of convergence. This is particularly true for the more difficult case of equation 
systems with non-positive real matrices. However, as a result of intense research activity in recent 
years, increasingly more sophisticated and robust iterative solvers for the above equation systems 
have become available. In the present study we have employed two such iterative solvers for the 
solution of the advection-diffusion type linear equation systems which appear in the segregated 
algorithms. These are the conjugate gradient squared (CGS) and generalized minimum residual 
(GMRES) iterative solvers, which are briefly described below. 
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3.3.I .The CGS solver. The CGS solver is a conjugate gradient-like solver which has been 

The algorithmic steps of the CGS solver are as follows: 

choose xo, 
set ro = b - Axo, 
set go = uo = r$ = ro, 

derived from the biconjugate gradient method (BCG) (see Reference 29 and 30). 

for i = O ,  1,2,. . . until convergence do: 

pi+ 1 =ui-aiAgi, 
Xi+  1 =xi+ai(ui +Pi+ 11, 

ri+ 1 = ri-aiA(ui + pi+ 1 1 3  

u i+ l=r i+ l+b iP i+1 ,  
gi+ 1 =ui+ 1 + bi(bigi+pi+ 

Api+ 1 =Ar i+  1 + biApi, 

where 

ai=(ro*, ri)/(ro*? Agi), 
bi=(r,*, ri+ 1 ) / ( ~ 8 2  ri). 

The CGS algorithm can be implemented with six vectors of length N .  

3.3.2. The GMRES soluer. The GMRES solver is a sophisticated iterative solver which cannot 
break down even for indefinite matrices (see References 31 and 32). The solver is derived from the 
full orthogonalization method (FOM) of Saad33r 34 and employs the Arnoldi process to construct 
an orthogonal basis of Krylov subspaces. The methodology behind this solver is detailed and 
complex; here we only give a brief description. For a detailed exposition of the solver and the 
implementation of its algorithmic steps, see References 35 and 36. 

As in the other solvers described above, the GMRES solver generates a sequence of iterates 
converging to the solution of the linear equation system Ax = b. If xo is the initial guess for the 
true solution x, then letting x =xo + z ,  we have the equivalent system 

Az = ro, 

where ro = b - Axo is the initial residual. Letting K ,  be the Krylov subspace 

K,mspan { r o , A r o , .  . . , Arr- ' ) ,  

GMRES finds an approximate solution 

x , = x o + z , ,  with z,EK, 

such that 

I(b - Ax,(l =min (Ib - A x ( /  (= min l(ro - Az( (  2). 

It can be shown that minimizing the above expression is equivalent to finding a vector ygM in 
Rm which minimizes the following norm 

l lbl  - fGYl l2 ,  
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where m is the inner iteration index of the GMRES solver. Moreover, 

B= l l r o l I 2 ~  

and H g  is the so-called Hessenberg matrix which is constructed from the orthogonal basis 
Vm= [ul, u2, . . . , v,] of the Krylov subspace K ,  (the orthogonal vectors v i  are obtained from the 
Arnoldi process noted above). 

Once y2M is obtained, the approximate GMRES solution xzM is given by 

x,“” = x o  + v m y p  

GMRES is guaranteed to converge to the exact solution of Ax = b in at most N steps using exact 
arithmetic for any non-singular ( N  x N )  matrix A .  However, a practical difficulty with GMRES is 
that the number of vectors that need to be stored increases with the inner iterations and the 
number of multiplications is proportional to the square of the inner iterations. Clearly the solver 
becomes increasingly more expensive as the number of inner iterations increases. Various 
strategies have been developed in the literature to limit (or cap) the potentially high cost of the 
GMRES solver. These range from setting a maximum upper limit on rn and restarting the 
GMRES algorithm with the approximate solution at that point, to limiting the number of vectors 
that need to be made orthogonal in the Arnoldi process. Unfortunately, with these changes 
convergence of the solver can no longer be guaranteed and in practice stagnation (or plateauing) 
of convergence is sometimes observed. 

3.4. Preconditioning 

Recall from Section 3.1 that the rate of convergence of an iterative solver depends on the 
properties of the coefficient matrix A which is itself characterized by its spectrum A(A). It was also 
noted that positive-definiteness, diagonal dominance and symmetry are properties of the coeffic- 
ient matrix which lead to better convergence behaviour in iterative solvers. The goal of precon- 
ditioning is to manipulate the original system of linear equations into an equivalent one that has 
a coefficient matrix with properties that are more amenable to iterative solution. This may not 
only help to accelerate the rate of convergence of an iterative solver but also help to stabilize the 
convergence characteristics of an otherwise stagnant or diverging solution. 

The choice of a good preconditioner is absolutely crucial to the viability of an iterative solver; 
experience has shown that the availability of a good preconditioner is far more important than 
the difference between various iterative solvers. However, despite this there is little theory 
available to guide the design of cost-effective and efficient preconditioners for the various types of 
coefficient matrices encountered in CFD applications. The limited theory that is available applies 
to the simplest (best) case of a symmetric positive-definite coefficient matrix A. In this case it may 
be shown (see Reference 26) that the upper bound on the number of iterations, iter, needed by the 
CG or CR solvers to obtain a solution with a specified tolerance, tol, is 

iter =+(ln(2/tol)) x (IC(A))”’ 

where K(A)  is the condition number of the coefficient matrix A, which is the ratio between the 
absolute values of the largest and smallest eigen values of A. iter is therefore proportional to the 
square root of the condition number and could be a large number if K(A)  is large. Thus, the goal of 
preconditioning in the context of linear equation systems with a symmetric positive definite 
coefficient matrix is to manipulate the original system of equations into an equivalent one that 
has a substantially lower condition number. In the case of non-symmetric and/or non-positive- 
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definite coefficient matrices and in the absence of firm theoretical insight, the design of precondi- 
tioners has been guided to a greater degree by intuition and experience. 

Recall that the above segregated algorithms involve outer iterations owing to the intercoupled 
and non-linear nature of the incompressible flow equations. As a result, the various linear 
equation systems characterized by the generic system Ax = b are solved sequentially and repeat- 
edly during the course of a typical simulation. Moreover, relaxation of the solution is also almost 
invariably used to ensure a stable convergence behaviour. Iterative solvers can be made to 
advantageously exploit the above two characteristics of segregated algorithms. Firstly, the outer 
iterations produce a good initial guess for the iterative solution of A x  = b which helps to reduce 
the number of inner iterations of the iterative linear equation solvers. Secondly, the need for 
relaxation of the solution provides the opportunity of manipulating (or preconditioning) the 
linear systems in such a manner as to make them better suited to iterative type solvers. 

Preconditioning can be achieved in various ways. In the present algorithms two precondition- 
ing strategies are employed; implicit preconditioning and conventional preconditioning. The 
preconditioners associated with these two strategies are applied at two distinct stages in the 
solution algorithms. 

3.4.1. Implicit preconditioning. As noted in Remarks 2.4, implicit relaxation is used in the 
non-symmetric advection4iffusion type linear equation systems. This has the combined effect of 
increasing the diagonal dominance and reducing the condition number of the coefficient matrices. 
Thus implicit relaxation is in essence a form of preconditioning which is automatically (and 
fortuitously) applied as part of the main segregated solution algorithms at no extra cost. 

It is important to note that implicit relaxation is applied to A x = b  before the conventional 
preconditioners described in the next section are employed. Thus, implicit relaxation could 
alternatively be viewed as being a process through which the original linear equation systems are 
conditioned before conventional preconditioning is applied. This is of great importance since as 
a result much simpler (and inexpensive) conventional preconditioners can be used in the solution 
of the implicitly relaxed Ax = b systems. 

3.4.2. Conventional preconditioning. In the conventional preconditioning approach, the gen- 
eric linear equation system Ax = b is replaced by the following equivalent system of equations: 

[ P ;  ' A P ;  '1 [P ,x]  = P;  b, 

where P ,  and PI are the right and left preconditioning matrices, respectively. Three different 
approaches are possible: 

1. left preconditioning approach; P ,  = I ,  
2. right preconditioning approach; P, = I ,  
3. split preconditioning approach P ,  and P I  # I .  

In the present study both the left and split preconditioning approaches have been used. 
The primary objective of conventional preconditioning is to make P;'AP;' 'look like' the 

identity matrix so that it has a small condition number of order unity. For preconditioning to be 
effective, the faster rate of convergence must overcome the added cost of applying the precon- 
ditioning, so that the total cost of solving the linear system is lower. Note that as an extreme (and 
impractical) example one could use P ;  ' = A - ' and P;  ' = I ;  thus, when applied in conjunction 
with an iterative solver, conventional preconditioning can be viewed as being a technique which 
spans the gap between a direct and an iterative solution of A x  = b. Experience shows that in order 
to be cost-effective, the preconditioning matrix should be sparse, easy to compute and inexpensive 
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to invert. In the present study two types of conventional preconditioning matrices have been used; 
diagonal and SSOR type preconditioning matrices. 

Diagonal preconditioning. Preconditioning with diagonal matrices is the simplest possible form 
of preconditioning. Since P is a diagonal matrix operations with P are inexpensive and fast. It has 
been shown that for symmetric positive-definite systems the best (or nearly the best choice) is 
P = diag(A). The low storage and small extra CPU cost per inner iteration of this scheme are its 
virtues; the large number of iterations that may still be required is its drawback. 

In our algorithms diagonal preconditioning of the left type (i.e. P,=diag(A), P,=l)  can be 
optionally used in the iterative solution of both symmetric and non-symmetric equation 
systems. 

SSOR preconditioning. SSOR preconditioning is one approach from a much wider class of 
methods which are based on incomplete factorizations of the coefficient matrix A. Noting that in 
the context of classical SSOR iterative solvers A is assumed to have the following decomposition: 

A =  L +  D +  U ,  

where L and U are lower and upper matrices, respectively , and D = diag(A). The classical SSOR 
matrix Q is then 

1 
Q=- 2 - 0  ( L  + D / o ) ( D / w ) -  ' ( D / o  + U),  

where o is the associated SSOR relaxation/acceleration factor. 
In the present study the inverse of Q with a= 1 is employed as the preconditioning matrix, viz. 

Q - ' = (U + D)- D ( L  + D)- '. 
We use the split approach to apply the SSOR preconditioning. Lack of space precludes a detailed 
exposition of the various steps involved in the implementation. The major component of cost 
associated with applying SSOR preconditioning is of the order of one matrix-vector multiplica- 
tion which, while non-trivial, is still relatively inexpensive. 

In our algorithms, SSOR preconditioning can be optionally used in the iterative solution of 
both symmetric and non-symmetric equation systems. 

3.5. Numerical tests and discussion of results 

In this section selected results are presented from numerical tests that were conducted to study 
the performance of the PP segregated algorithm using iterative solvers - hereafter denoted by 
PP(1). Comparisons are made with performance data from mainly the PP algorithm using the 
direct Gaussian elimination type solvers, PP(D), and where possible, from the base fully coupled 
solution algorithm, FC. Moreover, mostly 3D test cases are considered since the speed gains of 
iterative solvers are typically realized for large problems. 

First, the topic of relative performance of the various iterative solvers is considered. Table V 
contains pertinent data from a series of four runs conducted with the PP(1) algorithm with various 
combinations of the CG, CR, CGS and GMRES iterative solvers. The test problem, Case 5, is 3 D  
laminar flow in a blade mixer. The mesh contains 11517 nodes and consists of 10240 8-node brick 
elements. 
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Table V. Performance data from the PP(1) algorithm using various combinations of iterative linear 
equation solvers 

Iterative solver combination CG/CGS CR/CGS CG/GMRES CR/GMRES 
(symmetric/non-symmetric) 

Typical no. of inner iterations for each non- 22 22 30 30 
symmetric equation (u, u or w )  
Typical no. of inner iterations for each sym- 160 65 160 65 
metric equation ( p  or p’) 
Average combined solution time for one 21.5 21.5 24 24 
pass of u, v and w (CPU seconds) 
Average combined solution time for one 60 29 60 29 
pass of p and p s  (CPU seconds) 

Remarks 3.5.1 

1. In the above runs (and in the subsequent runs reported herein), for the conventional 
preconditioners we have employed SSOR preconditioning for the symmetric pressure-like 
equations and diagonal preconditioning for the non-symmetric advection-diffusion type 
equations. We have so far found this choice of conventional preconditioners to be the most 
optimal in the above segregated algorithms. Specifically, it is found that SSOR precon- 
ditioning applied to the pressure-like equation systems leads to between three and six times 
fewer inner iterations compared to diagonal preconditioning. The corresponding solution 
time for solving the pressure-like equations is between 1-5 to 3 times less. The difference 
between the choice of preconditioner is less critical for the non-symmetric advec- 
tion4iffusion type equations. It is typically found that SSOR preconditioning leads to half 
as many inner iterations compared to diagonal preconditioning. However, the solution time 
is mostly unaffected by the choice of preconditioner. 

2. The above table indicates that the best combination for iterative solvers for Case 5 is CR for 
the symmetric equations and CGS for the non-symmetric equations. Note that for the 
symmetric equations the CR solver is significantly more efficient than the CG solver. On the 
other hand, for the non-symmetric equations the less sophisticated CGS solver is more 
efficient than the GMRES solver, but not by such a large margin. This performance 
behaviour is representative of most other cases that have been studied so far. The superior 
performance of CGS solver over the GMRES solver in the context of the present segregated 
algorithms is somewhat fortunate since it means that less reliance needs to be placed upon 
the GMRES solver whose cost and storage requirements are unpredictable. Based on the 
above experience we are currently employing the CR/CGS combination as the default 
setting for the iterative solvers. This combination is used in the performance results reported 
in the following sections. 

3. The above table also indicates that the symmetric equations require a substantially larger 
number of inner iterations for the convergence of the iterative solvers compared to the 
non-symmetric equations. As a result in the above algorithms the cost associated with 
solving the pressure-like variables is proportionately (and substantially) more expensive 
than the corresponding cost of solving the remainder of the primary flow variables. 
Referring to Table V it can be seen that the cost of solving one symmetric equation 
(say, p )  is about four times more expensive than the cost of solving one non-symmetric 
equation (say, u). In extreme cases this cost ratio can be as much as 20. 
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Table VI. Relative performance data of PP(I), PP(D), and FC algorithms as a function of mesh refinement. 
Superscript indicates extrapolated value from coarser meshes 

No. of nodes Solution Matrix storage No. of Time per iteration 
algorithm (megawords) iterations (CPU seconds) 

1 5 ~ 7 ~ 1 5 = 1 5 7 5  

31 x 15 ~ 3 1 = 1 4 4 1 5  

4 5 ~ 2 3 ~ 4 5 = 4 6 5 7 5  

6 1 ~ 3 1 ~ 6 1 = 1 1 5 3 5 1  

0.035 
0.335 
2.48 
0.356 

13.4 
15 1.3 

1.18 
96.5 

1223 

2.98 
436.5 
> 15000 

10 
10 
9 
22 
22 

N.A. 

36 
36 

N.A. 

53 
53 

N.A. 

17.9 
25.15 
56 

203.9 
1263 
N.A. 

64 1.7 
15 969 
N.A. 

1681 
130 300* 

N.A. 

4. In an attempt to reduce the cost associated with solving the pressure-like variables, implicit 
relaxation was introduced in the symmetric equations in the three segregated algorithms. 
While this significantly reduced the number of inner iterations needed for the solution of the 
pressure like variables, it adversely affected the convergence rate of the outer iterations of the 
segregated algorithms and lead to substantially higher overall solution times. 

Next, the relative performance of the PP(I), PP(D), and where possible, the FC algorithms with 
mesh refinement is considered. Case 4 described earlier is used as the test problem for this 
purpose. Table VI contains the pertinent performance data from four levels of mesh refinement. 

The information contained in Table VI and some additional information relating to experience 
we have gained in comparing the performances of the above algorithms is summarized below. 

Remarks 3.5.2 

1. In implementing iterative solvers three alternative approaches may be used to perform the 
matrix-vector product required at every inner iteration. In the first approach the above 
product is performed at the element level and the element matrices are recomputed every 
time they are needed. This approach while requiring the least amount of storage is very 
wasteful of CPU time since element matrices are recomputed repeatedly. In the second 
approach the matrix-vector product is performed at the element level but the element 
matrices are stored (typically on low speed storage devices) to avoid their recomputation. 
This approach while requiring less CPU time than the first approach requires substantially 
more storage. For large problems where out-of-core storage is used, additional 1/0 costs are 
also incurred. In the third approach the matrix-vector product is performed at the global 
level. This requires the assembled global matrix which is typically stored in compact sparse 
form. Depending on the amount of memory available, this matrix may be kept either in core 
or stored out of core. The storage requirements and the speed of this third approach are 
comparable to those of the second approach. In our algorithms the third approach is 
employed. This increases the memory requirement. As can be seen from the above table, 
however, this extra storage is still quite small relative to that required by the direct solvers. 
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2. Table VI shows that the PP(1) algorithm has the least storage and CPU requirements. The 
FD(C) algorithm has the most storage and CPU requirements. 

3. The storage and CPU requirements of the PP(D) and FC(D) algorithms are proportional to 
NEQ x BW and NEQ x BW', respectively, where NEQ is the number of equations and BW 
is the bandwidth of the matrix. 

4. For the meshes used in Case 4 these requirements of the PP(D) and PP(1) algorithms may be 
expressed in terms of the number of nodes, NODES, and the number of primary degrees of 
freedom, NDOF (i.e. u, u, w and p )  as discussed below. 

5. The storage requirements of the PP(D) and FC(D) algorithms are proportional to 
NODES5/3 and NODES5I3 x NDOF', respectively. The latter expression becomes more 
accurate with increasing mesh size. 

6. The number of arithmetic operations required by the direct solver in the PP(D) and FC(D) 
algorithms is proportional to NODES713 and NODES713 x NDOF', respectively. 

7. The timing information contained in Table VI for the PP(D) algorithm follow the 
NODES713 trend on the finer meshes. The reasons for this are twofold. Firstly, on coarse 
meshes the matrix solution phase takes up a small portion of the overall CPU time, while on 
fine meshes most of the CPU time is taken up by the matrix solution phase. The other steps 
involved in the algorithm, such as element matrix formation and assembly, are linearly 
proportional to the number of elements present in the mesh and consequently take up 
proportionally less CPU time as the mesh size increases. The second reason is associated 
with the characteristics of the vector arithmetic performed on the Convex C220. The 
efficiency of the vectorization initially increases with increasing vector length (mesh refine- 
ment) but tapers off to a maximum for the long vector lengths resulting from the finer 
meshes. Consequently it is only at the limit of fine meshes that arithmetic vector operations 
become linearly scalable. 

8. The storage and CPU requirements of the PP(1) algorithm increase only linearly with the 
number of nodes in the computational mesh. As a result, the efficiency of the PP(1) algorithm 
grows dramatically with mesh refinement. 

Table VII contains further performance data from various other flow problems. The efficiency 
gains of the PP(1) algorithm with increasing problem size are once again seen to be quite 
dramatic. 

Table VII. Performance comparison between PP(1) and PP(D) algorithms on various 3-D flow problems. 
Superscript +c indicates estimated value obtained from extrapolated CPU time reported in Table VI 

No. of Run time Matrix storage 
nodes ratio ratio 

Flow in blade mixer (Case 5) 3D laminar; Re = 60 28.5 
Flow in blade mixer (Case 5) 3D laminar; Re=60 33995 6.56 42.11 
Flow around 90" bend in channel 3D turbulent; 43648 4.76 40.6 
Re = 40 000 
Flow over bluff body 3D turbulent; Re= 1.4 x lo6 39 482 7.92 51.7 
Flow in driven cavity (Case 4) 3D turbulent; Re= 100 46 575 24-9 81.8 
Flow over submarine 3D turbulent: Re = lo7 103 501 37 264 
Flow in driven cavity (Case 4) 3 D  laminar; Re=100 115351 775* 146.5 

1 1  5 17 4.97 
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4. CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper we have presented finite element solution algorithms for the numerical solution of 
large-scale incompressible flow problems. These algorithms are based on the two techniques of 
segregated formulation and iterative linear equation solution. 

Three different segregated solution algorithms were first presented and discussed. Using the 
direct Gaussian elimination type linear equation solvers, the integrity and relative performance of 
these algorithms were demonstrated via numerical tests. It was shown that the PP algorithm is 
the most efficient (in terms of CPU time) of the segregated algorithms. This was closely followed 
by the P U  algorithm with the PC algorithm being the slowest by a substantial margin. The 
performance of the PP algorithm using direct solvers was also compared with a fully coupled 
solution algorithm. It was shown that while the PP algorithm requires substantially less storage 
compared to the fully coupled algorithm, it runs faster only for 3D problems. 

Next, the four iterative linear equation solvers used to replace the direct Gaussian type linear 
equation solvers in the segregated algorithms were presented and discussed together with the 
preconditioning techniques used. Through numerical tests it was shown that CR solver with 
SSOR preconditioning is the most optimal choice for solving the symmetric pressure type 
equation systems and that the CGS solver with diagonal preconditioning is the optimal choice for 
the non-symmetric advection4iffusion type equations systems. The crucial importance of the 
implicit relaxation employed in the solution algorithms on the efficiency of the iterative solvers 
was also discussed. This increases the diagonal dominance of the non-symmetric equations and in 
so doing makes them significantly more amenable to iterative solvers. 

Through additional numerical tests it was shown that the combined strategy of segregated 
formulation and iterative linear equation solution brings about significant improvement in 
algorithm performance which becomes increasingly more dramatic as the size and physical 
complexity of the problem increases. 

In our future work we intend to improve further the eficiency and speed of the above 
segregated algorithms. This may be done by a combination of using more advanced precondi- 
tioners for the symmetric pressure-like equations and more efficient element matrix formation 
routines. At the global algorithmic level the possibility of replacing the Picard scheme with the 
Newton-Raphson-based schemes will also be investigated. 
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